Group testing is concerned with identifying $t$ defective items in a set of $m$ items, where each test reports whether a specific subset of items contains at least one defective. In non-adaptive group testing, the subsets to be tested are fixed in advance. By testing multiple items at once, the required number of tests can be made much smaller than $m$. In fact, for $t \in \mathcal{O}(1)$, the optimal number of (non-adaptive) tests is known to be $\Theta(\log{m})$. In this paper, we consider the problem of non-adaptive group testing in a geometric setting, where the items are points in $d$-dimensional Euclidean space and the tests are axis-parallel boxes (hyperrectangles). We present upper and lower bounds on the required number of tests under this geometric constraint. In contrast to the general, combinatorial case, the bounds in our geometric setting are polynomial in $m$. For instance, our results imply that identifying a defective pair in a set of $m$ points in the plane always requires $\Omega(m^{3/5})$ tests, and there exist configurations of $m$ points for which $\mathcal{O}(m^{2/3})$ tests are sufficient, whereas to identify a single defective point in the plane, $\Theta(m^{1/2})$ tests are always necessary and sometimes sufficient.


翻译:组测试涉及在一组美元项目中确定有缺陷的物品, 每份测试报告某一特定组项是否至少含有一个缺陷。 在非适应性组测试中, 要测试的子项是事先固定的。 通过一次测试多个项目, 所需的测试数量可以大大小于百万美元。 事实上, $t $@ in\ mathcal{O}(1)美元, 最佳( 非适应性) 测试数量( 美元) 。 在本文中, 我们考虑到在几何设置中进行非适应性组测试的问题, 而在非适应性组测试中, 需要用美元进行 euclidean 空间和测试的子项是轴- parel 框( 节点 ) 。 我们在此几何限制下显示所需测试数量的上下界限 。 与一般的、 cominal 案例相比, 我们的单项设置的界限总是需要美元。 例如, 我们的结果意味着, 在某平方平方平方平方平面的测试中, 一定的平方平方平方平面测试点 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
12+阅读 · 2019年7月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
12+阅读 · 2019年7月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员