We study the mechanisms of pattern formation for vegetation dynamics in water-limited regions. Our analysis is based on a set of two partial differential equations (PDEs) of reaction-diffusion type for the biomass and water and one ordinary differential equation (ODE) describing the dependence of the toxicity on the biomass. We perform a linear stability analysis in the one-dimensional finite space, we derive analytically the conditions for the appearance of Turing instability that gives rise to spatio-temporal patterns emanating from the homogeneous solution, and provide its dependence with respect to the size of the domain. Furthermore, we perform a numerical bifurcation analysis in order to study the pattern formation of the inhomogeneous solution, with respect to the precipitation rate, thus analyzing the stability and symmetry properties of the emanating patterns. Based on the numerical bifurcation analysis, we have found new patterns, which form due to the onset of secondary bifurcations from the primary Turing instability, thus giving rise to a multistability of asymmetric solutions.
翻译:我们研究了水限制地区的植被动态的图案形成机制。我们的分析基于一组反应扩散类型的两个偏微分方程(PDE)和一个描述毒性与生物量的依赖关系的常微分方程(ODE)。我们在一维有限空间中进行线性稳定性分析,推导了Turing不稳定性出现的条件,这种不稳定性产生了从均匀解出发的时空模式,并提供了它对于域的大小的依赖关系。此外,我们通过数值分叉分析研究了因降水率而产生的不均匀解的图形形成情况,从而分析了产生的图案的稳定性和对称性质。基于数值分叉分析,我们发现了新的图案,这些图案由于从主要的Turing不稳定性的次级分叉而形成,从而产生了不对称解的多稳定性。