In this paper, we put forward secure network function computation over a directed acyclic network. In such a network, a sink node is required to compute with zero error a target function of which the inputs are generated as source messages at multiple source nodes, while a wiretapper, who can access any one but not more than one wiretap set in a given collection of wiretap sets, is not allowed to obtain any information about a security function of the source messages. The secure computing capacity for the above model is defined as the maximum average number of times that the target function can be securely computed with zero error at the sink node with the given collection of wiretap sets and security function for one use of the network. The characterization of this capacity is in general overwhelmingly difficult. In the current paper, we consider securely computing linear functions with a wiretapper who can eavesdrop any subset of edges up to a certain size r, referred to as the security level, with the security function being the identity function. We first prove an upper bound on the secure computing capacity, which is applicable to arbitrary network topologies and arbitrary security levels. When the security level r is equal to 0, our upper bound reduces to the computing capacity without security consideration. We discover the surprising fact that for some models, there is no penalty on the secure computing capacity compared with the computing capacity without security consideration. We further obtain an equivalent expression of the upper bound by using a graph-theoretic approach, and accordingly we develop an efficient approach for computing this bound. Furthermore, we present a construction of linear function-computing secure network codes and obtain a lower bound on the secure computing capacity.


翻译:在本文中, 我们设置了一个安全的网络函数, 用于一个定向循环网络 。 在这样一个网络中, 需要用一个水槽节点来计算一个目标函数, 在多个源节点上生成输入作为源信息, 而一个窃听器可以访问一个但不超过一个窃听器集中设置的窃听器, 无法获取关于源信息安全功能的任何信息。 上面模式的安全计算能力被定义为一个最大平均次数, 使目标功能能够安全地计算, 在水槽节点以零误差来安全地计算, 为网络的一种用途收集窃听器和安全约束功能。 这个功能的描述总的来说非常困难。 在目前的文件中, 我们考虑用一个安全线性功能来安全计算直线性功能, 被称为安全级别, 安全功能是身份功能。 我们首先证明一个安全计算能力的上限, 适用于任意的网络顶端和任意约束功能, 而在安全级别上, 我们使用安全等级的高级计算能力, 将安全级别进行相应的计算, 在安全级别上, 安全级别上进行一个安全等级的计算, 将一个安全等级的计算, 与安全等级的计算, 以等值 。 在安全级别上, 我们使用一个安全等级进行一个安全等级的计算, 安全等级的计算中, 将一个安全等级的计算, 将一个安全等级的计算, 将一个安全等级的计算, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员