In this paper, we put forward secure network function computation over a directed acyclic network. In such a network, a sink node is required to compute with zero error a target function of which the inputs are generated as source messages at multiple source nodes, while a wiretapper, who can access any one but not more than one wiretap set in a given collection of wiretap sets, is not allowed to obtain any information about a security function of the source messages. The secure computing capacity for the above model is defined as the maximum average number of times that the target function can be securely computed with zero error at the sink node with the given collection of wiretap sets and security function for one use of the network. The characterization of this capacity is in general overwhelmingly difficult. In the current paper, we consider securely computing linear functions with a wiretapper who can eavesdrop any subset of edges up to a certain size r, referred to as the security level, with the security function being the identity function. We first prove an upper bound on the secure computing capacity, which is applicable to arbitrary network topologies and arbitrary security levels. When the security level r is equal to 0, our upper bound reduces to the computing capacity without security consideration. We discover the surprising fact that for some models, there is no penalty on the secure computing capacity compared with the computing capacity without security consideration. We further obtain an equivalent expression of the upper bound by using a graph-theoretic approach, and accordingly we develop an efficient approach for computing this bound. Furthermore, we present a construction of linear function-computing secure network codes and obtain a lower bound on the secure computing capacity.
翻译:在本文中, 我们设置了一个安全的网络函数, 用于一个定向循环网络 。 在这样一个网络中, 需要用一个水槽节点来计算一个目标函数, 在多个源节点上生成输入作为源信息, 而一个窃听器可以访问一个但不超过一个窃听器集中设置的窃听器, 无法获取关于源信息安全功能的任何信息。 上面模式的安全计算能力被定义为一个最大平均次数, 使目标功能能够安全地计算, 在水槽节点以零误差来安全地计算, 为网络的一种用途收集窃听器和安全约束功能。 这个功能的描述总的来说非常困难。 在目前的文件中, 我们考虑用一个安全线性功能来安全计算直线性功能, 被称为安全级别, 安全功能是身份功能。 我们首先证明一个安全计算能力的上限, 适用于任意的网络顶端和任意约束功能, 而在安全级别上, 我们使用安全等级的高级计算能力, 将安全级别进行相应的计算, 在安全级别上, 安全级别上进行一个安全等级的计算, 将一个安全等级的计算, 与安全等级的计算, 以等值 。 在安全级别上, 我们使用一个安全等级进行一个安全等级的计算, 安全等级的计算中, 将一个安全等级的计算, 将一个安全等级的计算, 将一个安全等级的计算, 。