User trust is a crucial consideration in designing robust visual analytics systems that can guide users to reasonably sound conclusions despite inevitable biases and other uncertainties introduced by the human, the machine, and the data sources which paint the canvas upon which knowledge emerges. A multitude of factors emerge upon studied consideration which introduce considerable complexity and exacerbate our understanding of how trust relationships evolve in visual analytics systems, much as they do in intelligent sociotechnical systems. A visual analytics system, however, does not by its nature provoke exactly the same phenomena as its simpler cousins, nor are the phenomena necessarily of the same exact kind. Regardless, both application domains present the same root causes from which the need for trustworthiness arises: Uncertainty and the assumption of risk. In addition, visual analytics systems, even more than the intelligent systems which (traditionally) tend to be closed to direct human input and direction during processing, are influenced by a multitude of cognitive biases that further exacerbate an accounting of the uncertainties that may afflict the user's confidence, and ultimately trust in the system. In this article we argue that accounting for the propagation of uncertainty from data sources all the way through extraction of information and hypothesis testing is necessary to understand how user trust in a visual analytics system evolves over its lifecycle, and that the analyst's selection of visualization parameters affords us a simple means to capture the interactions between uncertainty and cognitive bias as a function of the attributes of the search tasks the analyst executes while evaluating explanations. We sample a broad cross-section of the literature from visual analytics, human cognitive theory, and uncertainty, and attempt to synthesize a useful perspective.


翻译:用户信任是设计稳健的视觉分析系统的重要考虑因素,这种系统可以指导用户在人类、机器和数据源所引入的不可避免的偏差和其他不确定性下得出合理正确的结论,尽管人类、机器和数据源所引入的不可避免的偏差和其他不确定性,但是,在设计稳健的视觉分析系统时,用户信任度是一个至关重要的考虑因素。尽管人类、机器和数据源所引入的不可避免的偏差和其他不确定性,但这两个应用领域都提出了同样的根源,由此产生了对可视性的理解:不确定性和风险的假设。此外,视觉分析系统,甚至比(传统上)在视觉分析系统中往往无法指导人类投入和方向的智能系统,更受多种认知偏差的影响,这些认知偏差进一步加剧了不确定性的计算,而这种不确定性可能影响到用户的简单表表表表表兄弟,最终对系统的信任。 在本文中,从数据源的不确定性的传播到数据源的跨度的解读,从视觉分析角度来评估,从视觉分析的推理判,从视觉和假设的推理算中,一个必要的是,从视觉分析系统的推理判的推算和推算,一个必要的,从视觉的推理判系统是理解和推理判的推算,一个必要的。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员