项目名称: 石墨烯纳米带的边缘效应及器件应用研究

项目编号: No.11274154

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王欣然

作者单位: 南京大学

项目金额: 90万元

中文摘要: 石墨烯纳米带以其独特的一维结构、开放性边缘和可控带隙成为石墨烯物理和器件研究的前沿和热点。然而常用的物理刻蚀以及氧化展开碳管方法不可避免地在制备过程中引入大量边缘缺陷,导致了纳米带在输运研究中无法表现出理论预测的本征性质,极大的限制了纳米带在器件方面的应用。最近,申请人与合作者通过超声展开碳管,实现了边缘平滑的纳米带。本项目拟利用申请人在石墨烯纳米带合成上的优势,完善现有的合成技术,系统研究石墨烯纳米带量子线及量子点的低温电子输运性质与高性能电子器件。揭示纳米带的量子尺寸效应与边缘对其物理性质(禁带宽度、电导率等)及输运现象(库伦阻塞、电子激发态等)的影响;实验上探索规则边缘引入的磁性边缘态与自旋极化输运,并在此基础上研究外场对电子/自旋输运的量子调控规律;实现高迁移率、高开关比的场效应器件以及纳米带pn结器件,为石墨烯纳米带在集成电路中的应用提供器件基础。

中文关键词: 石墨烯纳米带;迁移率;硫化钼;场效应晶体管;界面

英文摘要: Graphene Nanoribbons (GNRs) have attracted much interest because of their unique one-dimensional structures with open edges and tunable bandgaps. However, so far, common synthetic methods such as plasma etching and oxidative unzipping of carbon nantoubes inevitably create a lot of defects on the edges of GNRs, leading to low temperature transport characteristics dominated by defects rather than the intrinsic properties of GNRs. This has also limited the device applications of GNRs. Recently, we were able to synthesize high-quality GNRs by sonication-assisted unzipping of carbon nanotubes. Many GNRs exhibit well-difined, atomically smooth edges which provide an ideal testbed for many theoretical predictions. In this project, we propose to take advantage of our high-quality GNR samples, systematically study the electron transport in GNR quantum dots and quantum wires and make high-performance GNR devices. We will reveal the effect of quantum confinement and open edges on GNR properties (such as bandgap and conductivity) and transport phenomena (such as Coulomb blockade and excited states). We will explore the new physics introduced by the open edges such as the magnetic edge states widely predicted by theories. We will investigate the transport signature of the edges states, and realize spin-polarized transport. F

英文关键词: graphene nanoribbon;mobility;MoS2;field-effect transistors;interface

成为VIP会员查看完整内容
0

相关内容

【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年2月12日
专知会员服务
51+阅读 · 2020年12月28日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
重磅!达摩院2021十大科技趋势
新智元
0+阅读 · 2020年12月28日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年2月12日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员