An important challenge in metric learning is scalability to both size and dimension of input data. Online metric learning algorithms are proposed to address this challenge. Existing methods are commonly based on (Passive Aggressive) PA approach. Hence, they can rapidly process large volumes of data with an adaptive learning rate. However, these algorithms are based on the Hinge loss and so are not robust against outliers and label noise. Also, existing online methods usually assume training triplets or pairwise constraints are exist in advance. However, many datasets in real-world applications are in the form of input data and their associated labels. We address these challenges by formulating the online Distance-Similarity learning problem with the robust Rescaled hinge loss function. The proposed model is rather general and can be applied to any PA-based online Distance-Similarity algorithm. Also, we develop an efficient robust one-pass triplet construction algorithm. Finally, to provide scalability in high dimensional DML environments, the low-rank version of the proposed methods is presented that not only reduces the computational cost significantly but also keeps the predictive performance of the learned metrics. Also, it provides a straightforward extension of our methods for deep Distance-Similarity learning. We conduct several experiments on datasets from various applications. The results confirm that the proposed methods significantly outperform state-of-the-art online DML methods in the presence of label noise and outliers by a large margin.


翻译:衡量学习中的一个重要挑战是使输入数据的规模和层面具有可伸缩性。 提出了在线衡量学习算法来应对这一挑战。 现有方法通常以( Passive Agrestitionive) PA 方法为基础。 因此,它们可以迅速处理大量适应学习率的数据。 但是,这些算法基于Hinge损失,因此,对于外部线和标签噪音而言,这些算法并不强大。 另外,现有的在线方法通常假定培训三重或双向限制是预先存在的。然而,现实世界应用中的许多数据集是以输入数据及其相关标签为形式的。我们通过制定强有力的重新标定损失函数来应对这些挑战。提议的模型相当笼统,可以适用于任何基于PA的在线远距离统计算法。此外,我们开发了一个高效的一等式三通制建筑算法。最后,为了在高尺寸的DML环境中提供可缩缩放的缩放版,拟议方法不仅大大降低计算成本,而且通过深度的标定值测试方法,还保持了深度的远程数据运行率。 我们还在远程测试中提供了多种远程测试方法。

0
下载
关闭预览

相关内容

再缩放是一个类别不平衡学习的一个基本策略。当训练集中正、反例数据不均等时,令m+表示正例数,m-表示反例数,并且需对预测值进行缩放调整。
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
45+阅读 · 2019年12月20日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
8+阅读 · 2018年5月15日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员