In micro- and nano-scale systems, particles can be moved by using an external force like gravity or a magnetic field. In the presence of adhesive particles that can attach to each other, the challenge is to decide whether a shape is constructible. Previous work provides a class of shapes for which constructibility can be decided efficiently when particles move maximally into the same direction induced by a global signal. In this paper we consider the single step model, i.e., a model in which each particle moves one unit step into the given direction. We restrict the assembly process such that at each single time step actually one particle is added to and moved within the workspace. We prove that deciding constructibility is NP-complete for three-dimensional shapes, and that a maximum constructible shape can be approximated. The same approximation algorithm applies for 2D. We further present linear-time algorithms to decide whether or not a tree-shape in 2D or 3D is constructible. Scaling a shape yields constructibility; in particular we show that the $2$-scaled copy of every non-degenerate polyomino is constructible. In the three-dimensional setting we show that the $3$-scaled copy of every non-degenerate polycube is constructible.
翻译:在微型和纳米尺度系统中,粒子可以通过使用外部力(如重力或磁场)来移动。在存在可相互连接的粘合颗粒的情况下,挑战在于决定形状是否可建构。 先前的工作提供了一组形状, 当粒子以最大速度移动到一个全球信号引出的同一方向时, 可以有效决定可建构的形状。 在本文中, 我们考虑单步模型, 即每个粒子将一个单位步移动到给定方向的模型。 我们限制组装过程, 这样在工作空间内每个步骤都实际添加并移动一个粒子。 我们证明决定三维形状的可建构性是完全的, 并且可以近似一个最大可建构的形状。 同样的近似算法适用于 2D 。 我们进一步提出线性时间算法, 以决定2D 或 3D 中的树形形状是否可建构。 缩放形状的可建构值; 我们特别要显示每个非降解的多元度的多元度的立式复制件都是3维的。