We prove that the evidence lower bound (ELBO) employed by variational auto-encoders (VAEs) admits non-trivial solutions having constant posterior variances under certain mild conditions, removing the need to learn variances in the encoder. The proof follows from an unexpected journey through an array of topics: the closed form optimal decoder for Gaussian VAEs, a proof that the decoder is always smooth, a proof that the ELBO at its stationary points is equal to the exact log evidence, and the posterior variance is merely part of a stochastic estimator of the decoder Hessian. The penalty incurred from using a constant posterior variance is small under mild conditions, and otherwise discourages large variations in the decoder Hessian. From here we derive a simplified formulation of the ELBO as an expectation over a batch, which we call the Batch Information Lower Bound (BILBO). Despite the use of Gaussians, our analysis is broadly applicable -- it extends to any likelihood function that induces a Riemannian metric. Regarding learned likelihoods, we show that the ELBO is optimal in the limit as the likelihood variances approach zero, where it is equivalent to the change of variables formulation employed in normalizing flow networks. Standard optimization procedures are unstable in this limit, so we propose a bounded Gaussian likelihood that is invariant to the scale of the data using a measure of the aggregate information in a batch, which we call Bounded Aggregate Information Sampling (BAGGINS). Combining the two formulations, we construct VAE networks with only half the outputs of ordinary VAEs (no learned variances), yielding improved ELBO scores and scale invariance in experiments. As we perform our analyses irrespective of any particular network architecture, our reformulations may apply to any VAE implementation.


翻译:我们证明,由变异自动编码器(VAE)使用的较低约束度(ELBO)证据(ELBO)表明,在一定的温和条件下,后端差异是非三角解决方案的一部分,在一定的温和条件下,不断出现后端差异,消除了在编码器中学习差异的必要性。证据来自出乎意料的旅程,通过一系列专题:高山VAE的封闭形式最佳解码器,证明解码器总是平滑的,证明ELBO在其固定点与精确的日志证据相等,而后端差异仅仅是在某种随机偏差的测算器中, decoil Coloral Colors Aserian 的测算器中,使用恒定的离差值Ororal AA 的测算器中,在平流中,我们从OBOOO的测算方法中,我们只能进行相应的变现。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
39+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
30+阅读 · 2018年6月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年4月17日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
30+阅读 · 2018年6月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员