In this paper, a multivariate count distribution with Conway-Maxwell (COM)-Poisson marginals is proposed. To do this, we develop a modification of the Sarmanov method for constructing multivariate distributions. Our multivariate COM-Poisson (MultCOMP) model has desirable features such as (i) it admits a flexible covariance matrix allowing for both negative and positive non-diagonal entries; (ii) it overcomes the limitation of the existing bivariate COM-Poisson distributions in the literature that do not have COM-Poisson marginals; (iii) it allows for the analysis of multivariate counts and is not just limited to bivariate counts. Inferential challenges are presented by the likelihood specification as it depends on a number of intractable normalizing constants involving the model parameters. These obstacles motivate us to propose a Bayesian inferential approach where the resulting doubly-intractable posterior is dealt with via the exchange algorithm and the Grouped Independence Metropolis-Hastings algorithm. Numerical experiments based on simulations are presented to illustrate the proposed Bayesian approach. We analyze the potential of the MultCOMP model through a real data application on the numbers of goals scored by the home and away teams in the Premier League from 2018 to 2021. Here, our interest is to assess the effect of a lack of crowds during the COVID-19 pandemic on the well-known home team advantage. A MultCOMP model fit shows that there is evidence of a decreased number of goals scored by the home team, not accompanied by a reduced score from the opponent. Hence, our analysis suggests a smaller home team advantage in the absence of crowds, which agrees with the opinion of several football experts.


翻译:在本文中, 提议使用 Conway- Maxwell (COM)- Poisson 边际的多变量计数分布。 为此, 我们开发了用于构建多变量分布的 Sarmanov 方法的修改。 我们的多变量 COM- Poisson (MultCOMP) 模型具有一些可取的特征, 例如 (一) 它承认一个灵活的共变量矩阵, 允许负和非正非对角输入;(二) 它克服了文献中现有的双变量 COM- Poisson 边际的 COM- 19 边际分布的局限性;(三) 它允许对多变量计数进行分析, 并且不仅仅限于两变量分布。 我们的多变量 COM- P 模型模型模型显示, 我们的内端团队的内端优势通过交换算法和集团的独角化法处理。 在模拟A IML 上, 内端的内端值实验显示我们内部团队的进化法, 其进化法显示我们内部的进化方法的进化法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员