Deep Neural Networks (DNNs) are employed in an increasing number of applications, some of which are safety critical. Unfortunately, DNNs are known to be vulnerable to so-called adversarial attacks that manipulate inputs to cause incorrect results that can be beneficial to an attacker or damaging to the victim. Multiple defenses have been proposed to increase the robustness of DNNs. In general, these defenses have high overhead, some require attack-specific re-training of the model or careful tuning to adapt to different attacks. This paper presents HASI, a hardware-accelerated defense that uses a process we call stochastic inference to detect adversarial inputs. We show that by carefully injecting noise into the model at inference time, we can differentiate adversarial inputs from benign ones. HASI uses the output distribution characteristics of noisy inference compared to a non-noisy reference to detect adversarial inputs. We show an adversarial detection rate of 86% when applied to VGG16 and 93% when applied to ResNet50, which exceeds the detection rate of the state of the art approaches, with a much lower overhead. We demonstrate two software/hardware-accelerated co-designs, which reduces the performance impact of stochastic inference to 1.58X-2X relative to the unprotected baseline, compared to 15X-20X overhead for a software-only GPU implementation.


翻译:深神经网络(DNNS)被用于越来越多的应用,其中一些应用是安全的关键。 不幸的是,DNNS已知容易受到所谓的对抗性攻击,这种攻击操纵投入造成有利于攻击者或损害受害者的结果不正确的结果。为了提高DNNS的稳健性,提出了多种防御建议。一般而言,这些防御具有高压,有些需要针对攻击的重新培训模型或仔细调整,以适应不同的攻击。本文展示了HASI,一种硬件加速防御,我们称之为对对抗性投入的诊断。我们表明,通过在推断时间将声音仔细注入模型,我们可以将对抗性投入与良性投入区分开来。HASI使用了噪音的分布特征,而不是无噪音的引用来探测对抗性投入。我们在VGG16和ResNet50应用时的对抗性检测率分别为86%和93%,这超过了艺术方法的检测率,比GGG16和ResNet50低得多的检测率。我们显示,我们通过仔细的输入模型,我们可以区分对抗性投入。我们用两种软件/软件,比GVGV16和SVX的软软件降低了15度。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员