Artificial Neural Networks (ANNs) can be viewed as nonlinear sieves that can approximate complex functions of high dimensional variables more effectively than linear sieves. We investigate the performance of various ANNs in nonparametric instrumental variables (NPIV) models of moderately high dimensional covariates that are relevant to empirical economics. We present two efficient procedures for estimation and inference on a weighted average derivative (WAD): an orthogonalized plug-in with optimally-weighted sieve minimum distance (OP-OSMD) procedure and a sieve efficient score (ES) procedure. Both estimators for WAD use ANN sieves to approximate the unknown NPIV function and are root-n asymptotically normal and first-order equivalent. We provide a detailed practitioner's recipe for implementing both efficient procedures. We compare their finite-sample performances in various simulation designs that involve smooth NPIV function of up to 13 continuous covariates, different nonlinearities and covariate correlations. Some Monte Carlo findings include: 1) tuning and optimization are more delicate in ANN estimation; 2) given proper tuning, both ANN estimators with various architectures can perform well; 3) easier to tune ANN OP-OSMD estimators than ANN ES estimators; 4) stable inferences are more difficult to achieve with ANN (than spline) estimators; 5) there are gaps between current implementations and approximation theories. Finally, we apply ANN NPIV to estimate average partial derivatives in two empirical demand examples with multivariate covariates.


翻译:人工神经网络(ANNS)可被视为非线性插座,可以比线性缩略图更有效地近近近高维变量的复杂功能。我们调查了非参数性工具变量(NPIV)模型中与实证经济学相关的中度高度共变体(NPIV)模型中各个非参数性非参数性能。我们为加权平均衍生物(WAD)的估算和推算提供了两种有效的估计和推算程序:一个或线性插座,具有最优加权的筛选最小距离(OP-OSMD)程序,以及一个筛选高效的评分(ES)程序。WAADA的估测员使用ANNE(NE)来近似未知的 NPIV功能性能(NP)模型性能(NP)和一级(NONA 平均变距值(OP)之间的测算和正值(ONPA)之间,比OO的测算更难的正值(O),比ODO(NO)更难的估测算,比OA(NO)更难的估测算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员