Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in a recent paper by K. McGoff, S. Mukherjee and A. Nobel. Our approach makes use of non-additive thermodynamic formalism and large deviation properties instead of joinings.
翻译:统计推论可被视为信息处理,涉及输入信息和产出信息,以更新对一些未知参数的信念。我们认为,贝耶斯框架从ergodic观察中推断动态系统,而巴耶斯程序基于Gibbs 事后推论,这是对标准巴耶斯推论的一种决策程序,其可能性被损失函数指数取代。在直接观察和几乎增加的损失函数中,我们证明后继测量尺度的指数趋同。我们对Bayes 后游集为直接观测的估算是相关的,并扩展了K. McGoff、S. Mukherjee和A. Nobel最近一篇论文中的估算。我们的方法是使用非重叠的热力形式主义和大偏差特性,而不是加入。