Most unsupervised image anomaly localization methods suffer from overgeneralization because of the high generalization abilities of convolutional neural networks, leading to unreliable predictions. To mitigate the overgeneralization, this study proposes to collaboratively optimize normal and abnormal feature distributions with the assistance of synthetic anomalies, namely collaborative discrepancy optimization (CDO). CDO introduces a margin optimization module and an overlap optimization module to optimize the two key factors determining the localization performance, i.e., the margin and the overlap between the discrepancy distributions (DDs) of normal and abnormal samples. With CDO, a large margin and a small overlap between normal and abnormal DDs are obtained, and the prediction reliability is boosted. Experiments on MVTec2D and MVTec3D show that CDO effectively mitigates the overgeneralization and achieves great anomaly localization performance with real-time computation efficiency. A real-world automotive plastic parts inspection application further demonstrates the capability of the proposed CDO. Code is available on https://github.com/caoyunkang/CDO.


翻译:最不受监督的图像异常地方化方法由于进化神经网络的高度普遍化能力而普遍化,导致不可靠的预测。为减轻过分普遍化,本研究报告提议在合成异常(即协作差异优化)的协助下,合作优化正常和异常特征分布,即合作差异优化。 CDO引入一个差幅优化模块和一个重叠优化模块,以优化确定正常和异常样本本地化性能的两个关键因素,即正常和异常样本的差幅和重叠。CDO获得了正常和异常DDD之间的大差幅和小部分重叠,预测可靠性得到提高。MVTec2D和MVTec3D的实验表明,CDO有效地减轻了超常化,并实现了实时计算效率的高度异常本地化性能。一个真实世界的汽车塑料部件检查应用程序进一步证明了拟议的CDO的能力。代码可在https://github.com/cooyunkang/CDODO上查阅。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员