Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way, distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.
翻译:液化是一种常见的图像编辑技术,可用于图像扭曲。 由于扭曲变异的不确定性, 恢复由精密过滤器造成的扭曲图像是一项艰巨的任务。 要高效地编辑图像, 需要自动恢复被扭曲的图像。 本文旨在修复被歪曲的图像, 其特点是寻求适当的扭曲和完成被歪曲的图像。 现有方法侧重于硬件援助或几何原则, 以解决自然现象造成的特定常规变形, 但是它们无法处理本项任务中人为变形的不正常和不确定性。 解决这个问题, 我们提出基于深层神经网络的新颖的基因化和歧视性学习方法, 它可以学习各种重建图谱, 并代表复杂和高维的数据。 此方法将任务分解成一个校正阶段和完善阶段。 第一阶段的基因化网络预测从被扭曲的图像到被纠正的图像的绘图。 第二阶段的基因化网络随后进一步优化了该任务中人为变形的特性。 由于没有可用的数据设置或基准来探索这项任务, 我们创建了一种扭曲的面形数据化和有区别的学习方法, 用于前方位图像的恢复, 以CLA 格式的模型 测试方法展示了我们的拟议的模型的模拟模型模型 。