We present generalized balancing weights, Neural Balancing Weights (NBW), to estimate the causal effects for an arbitrary mixture of discrete and continuous interventions. The weights were obtained by directly estimating the density ratio between the source and balanced distributions by optimizing the variational representation of $f$-divergence. For this, we selected $\alpha$-divergence since it has good properties for optimization: It has a $\sqrt{N}$-consistency estimator and unbiased mini-batch gradients and is advantageous for the vanishing gradient problem. In addition, we provide a method for checking the balance of the distribution changed by the weights. If the balancing is imperfect, the weights can be improved by adding new balancing weights. Our method can be conveniently implemented with any present deep-learning libraries, and weights can be used in most state-of-the-art supervised algorithms.


翻译:我们提出了通用平衡权重,即神经平衡权重(NBW),以估计离散和连续干预任意混合的因果关系。加权是直接估计源与均衡分布之间的密度比,通过优化美元差异性表示法优化了源与平衡分布之间的密度比。为此,我们选择了美元(alpha$-digence),因为它具有良好的优化性能:它有一个美元(sqrt{N})的一致估计值和不带偏见的微型批量梯度,并且对消失的梯度问题有利。此外,我们提供了一种方法来检查因重量而变化的分布平衡。如果平衡不完善,则可以通过增加新的平衡权重来改进加权。我们的方法可以方便地在任何深层次的图书馆中加以实施,而权重可以用于大多数最先进的监督算法中。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员