Spiking neural networks (SNN) have recently emerged as alternatives to traditional neural networks, owing to energy efficiency benefits and capacity to better capture biological neuronal mechanisms. However, the classic backpropagation algorithm for training traditional networks has been notoriously difficult to apply to SNN due to the hard-thresholding and discontinuities at spike times. Therefore, a large majority of prior work believes exact gradients for SNN w.r.t. their weights do not exist and has focused on approximation methods to produce surrogate gradients. In this paper, (1) by applying the implicit function theorem to SNN at the discrete spike times, we prove that, albeit being non-differentiable in time, SNNs have well-defined gradients w.r.t. their weights, and (2) we propose a novel training algorithm, called \emph{forward propagation} (FP), that computes exact gradients for SNN. FP exploits the causality structure between the spikes and allows us to parallelize computation forward in time. It can be used with other algorithms that simulate the forward pass, and it also provides insights on why other related algorithms such as Hebbian learning and also recently-proposed surrogate gradient methods may perform well.


翻译:由于节能效益和更好地捕捉生物神经机制的能力,最近出现了传统神经网络的替代物。然而,传统传统传统传统传统神经网络的反向调整算法(SNN)最近成为传统神经网络(SNN)的替代物。然而,传统的传统传统传统传统网络培训反向调整算法(SNN)由于在峰值出现时坚硬的保持和不连续,因此很难适用于SNNN。因此,大多数以前的工作都认为SNNN(w.r.r.t)的精确梯度是准确的。它们的重量并不存在,侧重于产生替代梯度的近似方法。在本文中,(1) 通过在离散的峰值时将隐含的函数代号应用到SNNN(S),我们证明SNNN尽管在时间上是不可区分的,但SNNN(S)的典型的反向调整算法是众所周知的梯度(w.r.t.),但由于SNNNN(F)的重量和精确梯度不存在,因此可以对SNNN(SNN)进行精确的梯度结构进行精确的计算。F在时间上进行平行的计算。我们可以用其他算法来模拟前向前向前向前向的计算。它可以使用其他算法,它也可以用来用来模拟前向前向前向前向的推,也提供其他的推的推。</s>

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员