We present NeRFVS, a novel neural radiance fields (NeRF) based method to enable free navigation in a room. NeRF achieves impressive performance in rendering images for novel views similar to the input views while suffering for novel views that are significantly different from the training views. To address this issue, we utilize the holistic priors, including pseudo depth maps and view coverage information, from neural reconstruction to guide the learning of implicit neural representations of 3D indoor scenes. Concretely, an off-the-shelf neural reconstruction method is leveraged to generate a geometry scaffold. Then, two loss functions based on the holistic priors are proposed to improve the learning of NeRF: 1) A robust depth loss that can tolerate the error of the pseudo depth map to guide the geometry learning of NeRF; 2) A variance loss to regularize the variance of implicit neural representations to reduce the geometry and color ambiguity in the learning procedure. These two loss functions are modulated during NeRF optimization according to the view coverage information to reduce the negative influence brought by the view coverage imbalance. Extensive results demonstrate that our NeRFVS outperforms state-of-the-art view synthesis methods quantitatively and qualitatively on indoor scenes, achieving high-fidelity free navigation results.
翻译:我们提出了 NeRFVS,这是一种新颖的基于神经辐射场 (NeRF) 的方法,可实现房间内的自由导航。NeRF 在为新视图渲染图像方面表现出色,与输入视图相似,但在与训练视图明显不同的新视图方面存在问题。为了解决这个问题,我们利用神经重建的整体先验知识,包括伪深度图和视图覆盖信息,来指导 3D 室内场景的隐式神经表征的学习。具体而言,我们利用现成的神经重建方法生成几何支架。然后,我们提出了两个基于整体先验的损失函数来改善 NeRF 的学习:1) 鲁棒的深度损失可以容忍伪深度图的误差来指导 NeRF 的几何学习;2) 方差损失用于规范隐式神经表征的方差,以减少学习过程中的几何和颜色的歧义。根据视图覆盖信息,这两个损失函数在 NeRF 优化期间得到了调制,以减少视图覆盖不平衡所带来的负面影响。广泛的结果表明,我们的 NeRFVS 在室内场景上在定量和定性上均优于最先进的视点合成方法,实现了高保真度的自由导航结果。