The advances of sensor technology enable people to monitor air quality through widely distributed low-cost sensors. However, measurements from these sensors usually encounter high biases and require a calibration step to reach an acceptable performance in down-streaming analytical tasks. Most existing calibration methods calibrate one type of sensor at a time, which we call single-task calibration. Despite the popularity of this single-task schema, it may neglect interactions among calibration tasks of different sensors, which encompass underlying information to promote calibration performance. In this paper, we propose a multi-task calibration network (MTNet) to calibrate multiple sensors (e.g., carbon monoxide and nitrogen oxide sensors) simultaneously, modeling the interactions among tasks. MTNet consists of a single shared module, and several task-specific modules. Specifically, in the shared module, we extend the multi-gate mixture-of-experts structure to harmonize the task conflicts and correlations among different tasks; in each task-specific module, we introduce a feature selection strategy to customize the input for the specific task. These improvements allow MTNet to learn interaction information shared across different tasks, and task-specific information for each calibration task as well. We evaluate MTNet on three real-world datasets and compare it with several established baselines. The experimental results demonstrate that MTNet achieves the state-of-the-art performance.
翻译:传感器技术的进步使人们能够通过广泛分布的低成本传感器来监测空气质量。然而,这些传感器的测量通常会遇到高度偏差,需要有一个校准步骤,才能在下游分析任务中达到可接受的性能。大多数现有的校准方法一次校准一种传感器,我们称之为单一任务校准。尽管这种单一任务模式很受欢迎,但它可能忽视不同传感器校准任务之间的相互作用,这包括促进校准性能的基本信息。在本文件中,我们提出一个多任务校准网络(MTNet),以同时校准多个传感器(例如一氧化碳和氧化氮传感器),模拟任务之间的相互作用。MTNet由单一共享模块和若干任务特定模块组成。具体地说,在共享模块中,我们扩展了多任务组合专家结构,以协调不同任务之间的任务冲突和关联;在每一个任务模块中,我们提出一个特征选择战略,将具体任务的投入定制为具体任务。这些改进使MTNet能够学习不同任务之间共享的互动信息,并模拟任务之间的相互作用。MTNet由一个单一共享模块组成,以及若干任务具体任务基准测试结果。