A generalized algebraic framework is presented for a broad class of high-order methods for hyperbolic systems of conservation laws on curvilinear unstructured grids. The framework enables the unified analysis of many popular discontinuous Galerkin (DG) and flux reconstruction (FR) schemes based on properties of the matrix operators constituting such discretizations. The salient components of the proposed methodology include the formulation of a polynomial approximation space and its representation through a nodal or modal basis on the reference element, the construction of discrete inner products and projection operators based on quadrature or collocation, and the weak enforcement of boundary and interface conditions using numerical flux functions. Situating such components common to DG and FR methods within the context of the summation-by-parts property, a discrete analogue of integration by parts, we establish the algebraic equivalence of certain strong-form and weak-form discretizations, reinterpret and generalize existing connections between the DG and FR methods, and describe a unifying approach for the analysis of conservation and linear stability for methods within the present framework. Numerical experiments are presented for the two-dimensional linear advection and compressible Euler equations, corroborating the theoretical results.
翻译:提出了一个通用的代数框架,用于对卷轴无结构格网格的超双曲保护法法高阶法的广泛类别高阶方法,该框架能够根据构成这种离散的矩阵操作员的特性,对许多流行的不连续加列金(DG)和通量重建(FR)计划进行统一分析;拟议方法的突出组成部分包括:在参考要素的基础上,通过节点或模式化,制定多元近似空间及其代表形式;在二次或合置的基础上,建造离散内部产品和投影操作员;利用数字通量功能,对边界和界面条件执行不力;在按部和部对称特性和通量重法方法中,将这些共同的构成部分置于DG和FR方法中;在按部分对等属性进行对比的背景下,将这种共同的构成部分置于DG和FR方法中;将某些强形和弱形分立的离散空间进行相等等,重新相互交替,并概括地归纳和概括地将DG和FR方法之间的现有联系,并描述对本框架内方法的保护和线性稳定性进行分析的统一办法。在按部位进行这种基化的理论实验,为两维级的理论和透化结果。