We present a practical algorithm to approximate the exponential of skew-Hermitian matrices based on an efficient computation of Chebyshev polynomials of matrices and the corresponding error analysis. It is based on Chebyshev polynomials of degrees 2, 4, 8, 12 and 18 which are computed with only 1, 2, 3, 4 and 5 matrix-matrix products, respectively. For problems of the form $\exp(-iA)$, with $A$ a real and symmetric matrix, an improved version is presented that computes the sine and cosine of $A$ with a reduced computational cost. The theoretical analysis, supported by numerical experiments, indicates that the new methods are more efficient than %diagonalising the matrix when its norm is not very large, and also than other schemes based on rational Pad\'e approximants and Taylor polynomials for all tolerances and time interval lengths. The new procedure is particularly recommended to be used in conjunction with exponential integrators for the numerical time integration of the Schr\"odinger equation.
翻译:我们提出了一个实际算法,根据对基质的Chebyshev多元分子数的高效计算和相应的错误分析,来估计skew-Hermitian矩阵的指数。它基于化学比谢夫2、4、8、12和18度的多元分子数,分别使用1、2、3、4和5个矩阵矩阵矩阵矩阵产品进行计算。对于以美元表示的表格问题,用美元表示真实和对称矩阵,则提出一个经过改进的版本,以降低计算成本的方式计算$A$的正正弦和正弦。理论分析得到数字实验的支持,表明新方法比在标准不十分大的情况下对矩阵进行%diagonal化的效率更高,也比其他基于理性Pad\'approximants和Taylor 多元分子等离子和时间间隔长度的其他方案的效率更高。特别建议与指数化调控器一起使用新程序,用于Schr\\\“odiger”等式的数字时间整合。