In the present work, a novel class of hybrid elements is proposed to alleviate the locking anomaly in non-uniform rational B-spline (NURBS)-based isogeometric analysis (IGA) using a two-field Hellinger-Reissner variational principle. The proposed hybrid elements are derived by adopting the independent interpolation schemes for displacement and stress field. The key highlight of the present study is the choice and evaluation of higher-order terms for the stress interpolation function to provide a locking-free solution. Furthermore, the present study demonstrates the efficacy of the proposed elements with the treatment of several two-dimensional linear-elastic benchmark problems alongside the conventional single-field IGA, Lagrangian-based finite element analysis (FEA), and hybrid FEA formulation. It is shown that the proposed class of hybrid elements performs effectively for analyzing the nearly incompressible problem domains that are severely affected by volumetric locking along with the thin plate and shell problems where the shear and membrane locking is dominant. A better coarse mesh accuracy of the proposed method in comparison with the conventional formulation is demonstrated through various numerical examples. Moreover, the formulation is not restricted to the locking-dominated problem domains but can also be implemented to solve the problems of general form without any special treatment. Thus, the proposed method is robust, most efficient, and highly effective against different types of locking.


翻译:在目前的工作中,提出了一组新的混合要素,以缓解非统一理性B-Spline(NURBS)基于单战地、拉格朗吉亚的定质要素分析(FEA)和混合型FEA的变异性原则,从而缓解非统一理性B-spline(IGA)的异构分析(IGA)中锁定异常现象。拟议的混合要素是采用独立的流离失所和压力领域内插办法得出的。本研究报告的主要重点是选择和评价压力内插功能的较高等级条件,以提供一个无锁解决方案。此外,本研究报告表明拟议要素的效力,与传统的单战地IGA、拉格朗吉亚的定质要素分析(FEA)和混合型FEA的配方一道,处理若干二维线性线性线性基准问题。拟议方法的精确性更好,与常规配方相比,比较的精准性线性线性基准问题的准确性,通过不采用各种稳健的定型方法,也能够有效地分析几乎无法压缩的问题领域。此外,拟议的特殊性方法的制定方式也不得有限制。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员