Most real-world networks contain well-defined community structures where nodes are densely connected internally within communities. To learn from these networks, we develop MarkovGNN that captures the formation and evolution of communities directly in different convolutional layers. Unlike most Graph Neural Networks (GNNs) that consider a static graph at every layer, MarkovGNN generates different stochastic matrices using a Markov process and then uses these community-capturing matrices in different layers. MarkovGNN is a general approach that could be used with most existing GNNs. We experimentally show that MarkovGNN outperforms other GNNs for clustering, node classification, and visualization tasks. The source code of MarkovGNN is publicly available at \url{https://github.com/HipGraph/MarkovGNN}.
翻译:多数真实世界网络都包含定义明确的社区结构, 其中节点在社区内部紧密相连。 为了从这些网络中学习, 我们开发了MarkovGNNN, 直接捕捉不同变迁层社区的组成和演变。 与大多数考虑每个层次静态图的图像神经网络( GNN)不同, MarkovGNN 使用Markov进程生成了不同的随机矩阵, 然后在不同层次使用这些社区采集矩阵。 MarkovGNN 是一种一般方法, 可用于大多数现有的GNN 。 我们实验性地显示, MarkovGNN 超过了其他 GNNN, 用于聚合、 节点分类和可视化任务。 MarkovGNNN 的源代码在\ url{ https://github.com/ HipGraph/ MarkovGNN} 。