Modern deep neural network models suffer from adversarial examples, i.e. confidently misclassified points in the input space. It has been shown that Bayesian neural networks are a promising approach for detecting adversarial points, but careful analysis is problematic due to the complexity of these models. Recently Gilmer et al. (2018) introduced adversarial spheres, a toy set-up that simplifies both practical and theoretical analysis of the problem. In this work, we use the adversarial sphere set-up to understand the properties of approximate Bayesian inference methods for a linear model in a noiseless setting. We compare predictions of Bayesian and non-Bayesian methods, showcasing the advantages of the former, although revealing open challenges for deep learning applications.


翻译:现代深神经网络模型存在对抗性实例,即输入空间中令人信服的错误分类点,已经表明,贝叶西亚神经网络是探测对抗点的一个很有希望的方法,但由于这些模型的复杂性,仔细分析是有问题的。最近Gilmer等人(2018年)引入了对抗领域,这是一个玩具装置,简化了对这一问题的实际和理论分析。在这项工作中,我们利用对抗领域设置来理解无噪音环境中线性模型近似贝叶斯推论方法的特性。我们比较了巴伊西亚和非巴耶斯方法的预测,展示了前者的优势,尽管揭示了深层学习应用的公开挑战。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员