Implicit fields have recently shown increasing success in representing and learning 3D shapes accurately. Signed distance fields and occupancy fields are decades old and still the preferred representations, both with well-studied properties, despite their restriction to closed surfaces. With neural networks, several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet a fundamental representation considering unit vectors in 3D space and call it Vector Field (VF): at each point in $\mathbb{R}^3$, VF is directed at the closest point on the surface. We theoretically demonstrate that VF can be easily transformed to surface density by computing the flux density. Unlike other standard representations, VF directly encodes an important physical property of the surface, its normal. We further show the advantages of VF representation, in learning open, closed, or multi-layered as well as piecewise planar surfaces. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. Code is available at https://github.com/edomel/ImplicitVF.


翻译:隐式场最近在准确表示和学习3D形状方面显示出越来越多的成功。已经有几十年历史的有符号距离场和占据场仍然是首选的表示方法,尽管它们仅适用于封闭表面。使用神经网络,已经提出了几种其他变体和训练原则,旨在表示所有类别的形状。在本文中,我们开发了一种新颖且基本的表示,考虑3D空间中的单位向量,并将其称为向量场 (VF):在 $\mathbb{R}^3$ 中每个点指向表面上最近的点。我们从理论上证明,可以通过计算通量密度轻松将 VF 转换为表面密度。与其他标准表示不同,VF 直接编码表面的一个重要物理属性,即其法向。我们进一步展示了 VF 表示的优势,可用于学习开放、封闭、多层或分段平面表面。我们在包括 ShapeNet 在内的几个数据集上进行了比较,在表示任何类型的形状方面,提出的新的神经隐式场显示出优越的准确性,超过了其他标准方法。代码可在 https://github.com/edomel/ImplicitVF 上获得。

0
下载
关闭预览

相关内容

Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
23+阅读 · 2022年2月24日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员