This paper studies the design of two-wave experiments in the presence of spillover effects when the researcher aims to conduct precise inference on treatment effects. We consider units connected through a single network, local dependence among individuals, and a general class of estimands encompassing average treatment and average spillover effects. We introduce a statistical framework for designing two-wave experiments with networks, where the researcher optimizes over participants and treatment assignments to minimize the variance of the estimators of interest, using a first-wave (pilot) experiment to estimate the variance. We derive guarantees for inference on treatment effects and regret guarantees on the variance obtained from the proposed design mechanism. Our results illustrate the existence of a trade-off in the choice of the pilot study and formally characterize the pilot's size relative to the main experiment. Simulations using simulated and real-world networks illustrate the advantages of the method.
翻译:本文研究在研究者打算对治疗效果进行精确的推断时,在出现外溢效应时,在出现外溢效应的情况下进行两波实验的设计; 我们考虑通过单一网络连接的单元、个人之间的当地依赖性以及包括平均治疗和平均外溢效应在内的一般估计值类别; 我们采用统计框架设计与网络的两波实验,使研究者在参与者和治疗任务之间取得最佳效果,以尽量减少有关估计者的差异,利用第一波(试点)试验来估计差异; 我们保证在治疗效果方面作出推断,并对拟议设计机制的差异作出遗憾保证; 我们的结果表明在选择试点研究时存在权衡,并正式说明试验者的规模与主要试验相比。 模拟和现实世界网络的模拟显示了方法的优点。