Evolutionary algorithms have been shown to obtain good solutions for complex optimization problems in static and dynamic environments. It is important to understand the behaviour of evolutionary algorithms for complex optimization problems that also involve dynamic and/or stochastic components in a systematic way in order to further increase their applicability to real-world problems. We investigate the node weighted traveling salesperson problem (W-TSP), which provides an abstraction of a wide range of weighted TSP problems, in dynamic settings. In the dynamic setting of the problem, items that have to be collected as part of a TSP tour change over time. We first present a dynamic setup for the dynamic W-TSP parameterized by different types of changes that are applied to the set of items to be collected when traversing the tour. Our first experimental investigations study the impact of such changes on resulting optimized tours in order to provide structural insights of optimization solutions. Afterwards, we investigate simple mutation-based evolutionary algorithms and study the impact of the mutation operators and the use of populations with dealing with the dynamic changes to the node weights of the problem.
翻译:暂无翻译