Automatic pulmonary nodules classification is significant for early diagnosis of lung cancers. Recently, deep learning techniques have enabled remarkable progress in this field. However, these deep models are typically of high computational complexity and work in a black-box manner. To combat these challenges, in this work, we aim to build an efficient and (partially) explainable classification model. Specially, we use \emph{neural architecture search} (NAS) to automatically search 3D network architectures with excellent accuracy/speed trade-off. Besides, we use the convolutional block attention module (CBAM) in the networks, which helps us understand the reasoning process. During training, we use A-Softmax loss to learn angularly discriminative representations. In the inference stage, we employ an ensemble of diverse neural networks to improve the prediction accuracy and robustness. We conduct extensive experiments on the LIDC-IDRI database. Compared with previous state-of-the-art, our model shows highly comparable performance by using less than 1/40 parameters. Besides, empirical study shows that the reasoning process of learned networks is in conformity with physicians' diagnosis. Related code and results have been released at: https://github.com/fei-hdu/NAS-Lung.
翻译:对肺癌的早期诊断而言,自动肺结核分类非常重要。最近,深层学习技术使该领域取得了显著的进展。然而,这些深层模型通常具有很高的计算复杂性,并以黑盒方式工作。为了应对这些挑战,我们力求在这项工作中建立一个高效和(部分)可解释的分类模型。特别是,我们使用“神经结构搜索”自动搜索3D网络结构,其精度/速度取舍率很高。此外,我们使用网络中的共生区块关注模块(CBAM)帮助我们理解推理过程。在培训期间,我们使用A-软体损失来学习一个有差别的差别的表达方式。在推断阶段,我们采用多种神经网络的组合来提高预测准确性和稳健性。我们利用LIDDC-IDRI数据库进行广泛的实验。与以往的“艺术现状”相比,我们的模型显示的可高度可比性表现,使用不到1/40的参数。此外,实证研究表明,学习网络的推理过程符合医生的诊断:MAR-L-S-S-S/Safirimational 。