A universal classification model aims to generalize to diverse classification tasks in both zero and few shot settings. A promising way toward universal classification is to cast heterogeneous data formats into a dataset-agnostic "meta-task" (e.g., textual entailment, question answering) then pretrain a model on the combined meta dataset. The existing work is either pretrained on specific subsets of classification tasks, or pretrained on both classification and generation data but the model could not fulfill its potential in universality and reliability. These also leave a massive amount of annotated data under-exploited. To fill these gaps, we propose ConEntail, a new framework for universal zero and few shot classification with supervised contrastive pretraining. Our unified meta-task for classification is based on nested entailment. It can be interpreted as "Does sentence a entails [sentence b entails label c]". This formulation enables us to make better use of 57 annotated classification datasets for supervised contrastive pretraining and universal evaluation. In this way, ConEntail helps the model (1) absorb knowledge from different datasets, and (2) gain consistent performance gain with more pretraining data. In experiments, we compare our model with discriminative and generative models pretrained on the same dataset. The results confirm that our framework effectively exploits existing annotated data and consistently outperforms baselines in both zero (9.4% average improvement) and few shot settings (3.5% average improvement).
翻译:通用分类模式旨在将零和少数镜头设置的不同分类任务普遍化为零和少数镜头设置的不同分类任务; 通向通用分类的一个大有希望的方法是将各种数据格式纳入数据集“元数据-任务”(例如,文字包含、问答),然后在合并元数据集上预设一个模型; 现有的工作要么在分类任务的具体子集上预先培训,要么在分类和生成数据方面预先培训,但模型无法在普遍性和可靠性方面发挥其潜力; 也留下大量附加说明的数据没有得到充分利用。 为了填补这些空白,我们建议ConEntail, 一个新的通用零和少几个镜头分类框架,有监督的对比前训练。 我们的统一元数据分类基于嵌入式要求。 这可以被解释为“ 单句包含[说明 b 包含标签 c ” 。 这一提法使我们能够更好地利用57个附加说明的分类数据集,以监督对比对比性培训前和普遍评价。 在这种方式中, Contailtail 帮助模型(1) 吸收不同数据集的知识, 和(2) 获得一致的性零分级的分类框架; 与持续地将我们的现有平均数据模型进行对比。