Recently, deep multi-agent reinforcement learning (MARL) has shown the promise to solve complex cooperative tasks. Its success is partly because of parameter sharing among agents. However, such sharing may lead agents to behave similarly and limit their coordination capacity. In this paper, we aim to introduce diversity in both optimization and representation of shared multi-agent reinforcement learning. Specifically, we propose an information-theoretical regularization to maximize the mutual information between agents' identities and their trajectories, encouraging extensive exploration and diverse individualized behaviors. In representation, we incorporate agent-specific modules in the shared neural network architecture, which are regularized by L1-norm to promote learning sharing among agents while keeping necessary diversity. Empirical results show that our method achieves state-of-the-art performance on Google Research Football and super hard StarCraft II micromanagement tasks.


翻译:最近,深入的多试剂强化学习(MARL)显示了解决复杂合作任务的希望,其成功部分是由于代理商之间共享参数。然而,这种共享可能导致代理商采取类似的行为,并限制其协调能力。在本文中,我们的目标是在共享多试剂强化学习的优化和代表性方面引入多样性。具体地说,我们提议信息理论规范化,以最大限度地提高代理商身份及其轨迹之间的相互信息,鼓励广泛的探索和多种个人化行为。作为代表,我们把特定代理商模块纳入共享神经网络架构,由L1-Norm规范,以促进代理商之间的学习共享,同时保持必要的多样性。经验性结果显示,我们的方法在谷歌研究足球和超硬StarCraft II微观管理任务上取得了最新业绩。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
9+阅读 · 2019年4月19日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
8+阅读 · 2021年5月21日
Arxiv
9+阅读 · 2019年4月19日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年6月12日
Top
微信扫码咨询专知VIP会员