Consider a network of agents that all want to guess the correct value of some ground truth state. In a sequential order, each agent makes its decision using a single private signal which has a constant probability of error, as well as observations of actions from its network neighbors earlier in the order. We are interested in enabling \emph{network-wide asymptotic truth learning} -- that in a network of $n$ agents, almost all agents make a correct prediction with probability approaching one as $n$ goes to infinity. In this paper we study both random orderings and carefully crafted decision orders with respect to the graph topology as well as sufficient or necessary conditions for a graph to support such a good ordering. We first show that on a sparse graph of average constant degree with a random ordering asymptotic truth learning does not happen. We then show a rather modest sufficient condition to enable asymptotic truth learning. With the help of this condition we characterize graphs generated from the Erd\"os R\'enyi model and preferential attachment model. In an Erd\"os R\'enyi graph, unless the graph is super sparse (with $O(n)$ edges) or super dense (nearly a complete graph), there exists a decision ordering that supports asymptotic truth learning. Similarly, any preferential attachment network with a constant number of edges per node can achieve asymptotic truth learning under a carefully designed ordering but not under either a random ordering nor the arrival order. We also evaluated a variant of the decision ordering on different network topologies and demonstrated clear effectiveness in improving truth learning over random orderings.
翻译:暂无翻译