Molecule optimization is a critical step in drug development to improve desired properties of drug candidates through chemical modification. We developed a novel deep generative model Modof over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets: without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in octanol-water partition coefficient penalized by synthetic accessibility and ring size; and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modifying one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement as at least 17.8% better than Modof-pipe.


翻译:分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 通过预测分子分离的单一站点 以及分子分离和/或添加碎片 分子优化 分子优化 分子优化 是药物开发的关键步骤 分子优化 药物开发 提高药物候选者预期特性 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 分子 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 分子 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 化学改造 分子改造 分子优化 分子改造 分子优化 分子优化 分子优化 分子改造 分子改造 分子优化 分子改造 分子优化 分子改造 分子改造 分子优化 分子优化 分子优化 分子优化 分子改造 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子优化 分子 分子 分子 分子 分子 分子 优化 优化 优化 分子 分子

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员