The edit distance of two strings is the minimum number of insertions, deletions, and substitutions of characters needed to transform one string into the other. The textbook dynamic-programming algorithm computes the edit distance of two length-$n$ strings in $O(n^2)$ time, which is optimal up to subpolynomial factors under SETH. An established way of circumventing this hardness is to consider the bounded setting, where the running time is parameterized by the edit distance $k$. A celebrated algorithm by Landau and Vishkin (JCSS '88) achieves time $O(n + k^2)$, which is optimal as a function of $n$ and $k$. Most practical applications rely on a more general weighted edit distance, where each edit has a weight depending on its type and the involved characters from the alphabet $\Sigma$. This is formalized through a weight function $w : \Sigma\cup\{\varepsilon\}\times\Sigma\cup\{\varepsilon\}\to\mathbb{R}$ normalized so that $w(a,a)=0$ and $w(a,b)\geq 1$ for all $a,b \in \Sigma\cup\{\varepsilon\}$ with $a \neq b$; the goal is to find an alignment of the two strings minimizing the total weight of edits. The $O(n^2)$-time algorithm supports this setting seamlessly, but only very recently, Das, Gilbert, Hajiaghayi, Kociumaka, and Saha (STOC '23) gave the first non-trivial algorithm for the bounded version, achieving time $O(n + k^5)$. While this running time is linear for $k\le n^{1/5}$, it is still very far from the bound $O(n+k^2)$ achievable in the unweighted setting. In this paper, we essentially close this gap by showing both an improved $\tilde O(n+\sqrt{nk^3})$-time algorithm and, more surprisingly, a matching lower bound: Conditioned on the All-Pairs Shortest Paths (APSP) hypothesis, our running time is optimal for $\sqrt{n}\le k\le n$ (up to subpolynomial factors). This is the first separation between the complexity of the weighted and unweighted edit distance problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月26日
Arxiv
0+阅读 · 2023年6月23日
Arxiv
0+阅读 · 2023年6月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年6月26日
Arxiv
0+阅读 · 2023年6月23日
Arxiv
0+阅读 · 2023年6月23日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员