The edit distance of two strings is the minimum number of insertions, deletions, and substitutions of characters needed to transform one string into the other. The textbook dynamic-programming algorithm computes the edit distance of two length-$n$ strings in $O(n^2)$ time, which is optimal up to subpolynomial factors under SETH. An established way of circumventing this hardness is to consider the bounded setting, where the running time is parameterized by the edit distance $k$. A celebrated algorithm by Landau and Vishkin (JCSS '88) achieves time $O(n + k^2)$, which is optimal as a function of $n$ and $k$. Most practical applications rely on a more general weighted edit distance, where each edit has a weight depending on its type and the involved characters from the alphabet $\Sigma$. This is formalized through a weight function $w : \Sigma\cup\{\varepsilon\}\times\Sigma\cup\{\varepsilon\}\to\mathbb{R}$ normalized so that $w(a,a)=0$ and $w(a,b)\geq 1$ for all $a,b \in \Sigma\cup\{\varepsilon\}$ with $a \neq b$; the goal is to find an alignment of the two strings minimizing the total weight of edits. The $O(n^2)$-time algorithm supports this setting seamlessly, but only very recently, Das, Gilbert, Hajiaghayi, Kociumaka, and Saha (STOC '23) gave the first non-trivial algorithm for the bounded version, achieving time $O(n + k^5)$. While this running time is linear for $k\le n^{1/5}$, it is still very far from the bound $O(n+k^2)$ achievable in the unweighted setting. In this paper, we essentially close this gap by showing both an improved $\tilde O(n+\sqrt{nk^3})$-time algorithm and, more surprisingly, a matching lower bound: Conditioned on the All-Pairs Shortest Paths (APSP) hypothesis, our running time is optimal for $\sqrt{n}\le k\le n$ (up to subpolynomial factors). This is the first separation between the complexity of the weighted and unweighted edit distance problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月26日
Arxiv
0+阅读 · 2023年6月26日
Arxiv
0+阅读 · 2023年6月23日
Arxiv
0+阅读 · 2023年6月23日
Arxiv
0+阅读 · 2023年6月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员