Nonparametric tests for functional data are a challenging class of tests to work with because of the potentially high dimensional nature of functional data. One of the main challenges for considering rank-based tests, like the Mann-Whitney or Wilcoxon Rank Sum tests (MWW), is that the unit of observation is a curve. Thus any rank-based test must consider ways of ranking curves. While several procedures, including depth-based methods, have recently been used to create scores for rank-based tests, these scores are not constructed under the null and often introduce additional, uncontrolled for variability. We therefore reconsider the problem of rank-based tests for functional data and develop an alternative approach that incorporates the null hypothesis throughout. Our approach first ranks realizations from the curves at each time point, summarizes the ranks for each subject using a sufficient statistic we derive, and finally re-ranks the sufficient statistics in a procedure we refer to as a doubly ranked test. As we demonstrate, doubly rank tests are more powerful while maintaining ideal type I error in the two sample, MWW setting. We also extend our framework to more than two samples, developing a Kruskal-Wallis test for functional data which exhibits good test characteristics as well. Finally, we illustrate the use of doubly ranked tests in functional data contexts from material science, climatology, and public health policy.
翻译:暂无翻译