项目名称: 肉牛异速生长的全基因组关联分析方法及调节屠宰性状成熟度基因的检测
项目编号: No.31472079
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 畜牧学与草地科学
项目作者: 高会江
作者单位: 中国农业科学院北京畜牧兽医研究所
项目金额: 86万元
中文摘要: 异速生长是某些生物学特征和个体质量之间幂函数关系,本研究基于这种生长关系提出了联合分析多个体成分相对整体异速生长的数学模型,并将这个模型镶嵌到SNP遗传效应中,建立以整体大小为目标性状逐个联合分析大量SNP的遗传模型。采用多元线性回归与最小绝对压缩和选择技术(LASSO)估计推断模型参数;定位调节动物多个体成分异速生长的SNP位点(QTN);使用计算机模拟证明新的基因定位方法的可靠性。我们将模型运用于本课题组测定的西门塔尔牛35个屠宰性状表型和700K个SNP标记分型数据,用以检测调节肉牛生长的QTN位点;利用课题组已获的的其它肉牛群体数据验证检测位点的可重现性。采用DHPLC和TOF-MS法对QTN位点进行分型;通过关联分析对QTL区间精细定位并确定候选基因;通过构建过表达载体和干扰载体研究候选基因对细胞功能的影响。最终达到为肉牛生长发育性状和肉质性状改良提供新的基因资源的目的。
中文关键词: 异速生长;全基因组关联分析;肉牛;屠宰性状;QTN
英文摘要: Simple allometry is the power function relationship between partial body size and individual quality. In this study, based on the definition of simple allometry, a static allometry scaling model wiil be developed. Then we will apply this genetic models into single or mutiple SNP genetic models, and establish the genetic models for mapping quantitative trait nucleotide (QTN) for animal allometries of multiple partial body size to entire one. Parameters will be infered by using multiple linear regression and least absolute shrinkage and selection operator (LASSO). Computer simulation experiments will be used to demonstrate the utility of our proposed method. To detect the QTNs regulating the allometries of slaughtering traits in beef cattle, our method will be applied to analyzing a real dataset containing phenotypes of 35 slaughtering traits and genotypes of 700K SNPs, repeatablity of the detectable QTNs will be tested via other acquired beef cattle group. In addition, DHPLC and TOF-MS will be used to detect and genotype the QTNs in the QTL region, the association between genotype and phenotype will be evaluated and candidate genes will be mapped, and the effects of candidate genes on cell line will be evaluated by over-expression and RNAi. Finally, this study will help us identify gene resource for improve gene resource and provide gene resource for improving beef quality.
英文关键词: Allometry;GWAS;Beef cattle;Slaughtering traits;QTN