Modeling molecular potential energy surface is of pivotal importance in science. Graph Neural Networks have shown great success in this field, especially those using rotation-equivariant representations. However, they either suffer from a complex mathematical form or lack theoretical support and design principle. To avoid using equivariant representations, we introduce a novel local frame method to molecule representation learning and analyze its expressive power. With a frame and the projection of equivariant vectors on the frame, GNNs can map the local environment of an atom to a scalar representation injectively. Messages can also be passed across local environments with frames' projection on frames. We further analyze when and how we can build such local frames. We prove that local frames always exist when the local environments have no symmetry, as is often the case in molecular dynamics simulations. For symmetric molecules, though only degenerate frames can be built, we find that the local frame method may still achieve high expressive power in some common cases due to the reduced degrees of freedom. Using only scalar representations allows us to adopt existing simple and powerful GNN architectures. Our model outperforms a range of state-of-the-art baselines in experiments. Simpler architectures also lead to higher scalability. Our model only takes about 30% inference time compared with the fastest baseline.
翻译:模拟分子潜在能源表面在科学中至关重要。 图形神经网络已经在这一领域表现出巨大的成功, 特别是那些使用旋转- 等式表达式的网络。 但是, 它们要么是复杂的数学形式, 要么是缺乏理论支持和设计原则。 为了避免使用等式表达式, 我们引入了一种新的本地框架方法来学习分子的表示法和分析其表达力。 如果在框架上设置了一个框架并投射了等量矢量, GNNs 就可以将原子的当地环境映射成一个缩放代表式。 信息也可以通过框架的图示传递到不同的地方环境中。 我们进一步分析何时以及如何建立这样的本地框架。 我们证明当当地环境没有对称性时, 总是存在本地框架, 正如分子动态模拟中经常出现的情况那样。 对于对称分子的分子来说, 虽然只能建立变形框架, 但是我们发现本地框架方法在某些常见情况下仍然可能达到高度的表达力。 由于自由度的下降, 只能使用缩放式表达式表达方式, 使我们能够采用现有的简单和强大的GNNS 基准结构。 我们的模型比重度在30 标准模型中, 我们的模型比得更高级模型比得更高级的模型比重范围 。 。 我们的模型比得更高级的模型比得更接近于最高级的模型 。 。 我们的模型比重范围范围 。 我们的模型比重的模型在最短的模型比重范围范围范围 。