Building on the one-to-one relationship between generalized FGM copulas and multivariate Bernoulli distributions, we prove that the class of multivariate distributions with generalized FGM copulas is a convex polytope. Therefore, we find sharp bounds in this class for many aggregate risk measures, such as value-at-risk, expected shortfall, and entropic risk measure, by enumerating their values on the extremal points of the convex polytope. This is infeasible in high dimensions. We overcome this limitation by considering the aggregation of identically distributed risks with generalized FGM copula specified by a common parameter $p$. In this case, the analogy with the geometrical structure of the class of Bernoulli distribution allows us to provide sharp analytical bounds for convex risk measures.
翻译:暂无翻译