Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.
翻译:经典机器学习隐含地假定,培训数据标签是从清洁的分发中抽样的,这对现实世界的情景来说可能过于严格。然而,基于统计学习的方法可能无法用这些吵闹的标签有力地培养深层次学习模式。 因此,迫切需要设计标签-噪音代表学习(LNRL)方法,用吵闹的标签对深层次模型进行强力培训。为了充分理解LNRL,我们进行了一项调查研究。我们首先从机器学习的角度澄清了LNRL的正式定义。然后,通过学习理论和经验研究的透镜,我们找出了为什么吵闹的标签影响深层次模型的性能。根据理论指导,我们把不同的LNRL方法分为三个方向。在这个统一的分类学中,我们提供了对不同类别的利弊的透彻讨论。更重要的是,我们总结了强大的LNRRL的基本组成部分,这可以引发新的方向。最后,我们提出了LNRL内部可能的研究方向,例如新的数据集,依赖LNRL和对抗性L。最后,我们根据理论,我们设想了超越LNRRiseise-reas-graise-graise-gration-gration-gration-gration-gration-gration-gration-gration-gration-gration-gration-gration-gration-plis-plis-graducis-plis-plis-graducis-s-gration-side-graducis-gration-s-gration-gration-plis-plis-graducis-graduducis-gradududucis-graducis-graducis-gration-gration-gration-gration-graducis-s-s-s-s-s-graducis-graducis-graducis-graducis-graducis-graducis-graducis-graducisicis-s-graducis-pl)的类似,我们以学习-graduc-s-s-s-s-s-s-pl-pl-pl-s-s-plis-pl-plis-p-pl-p-p-p-plis-pl-p-p-p-pl