Fix $p\in[1,\infty)$, $K\in(0,\infty)$ and a probability measure $\mu$. We prove that for every $n\in\mathbb{N}$, $\varepsilon\in(0,1)$ and $x_1,\ldots,x_n\in L_p(\mu)$ with $\big\| \max_{i\in\{1,\ldots,n\}} |x_i| \big\|_{L_p(\mu)} \leq K$, there exists $d\leq \frac{32e^2 (2K)^{2p}\log n}{\varepsilon^2}$ and vectors $y_1,\ldots, y_n \in \ell_p^d$ such that $$\forall \ i,j\in\{1,\ldots,n\}, \qquad \|x_i-x_j\|^p_{L_p(\mu)}- \varepsilon \leq \|y_i-y_j\|_{\ell_p^d}^p \leq \|x_i-x_j\|^p_{L_p(\mu)}+\varepsilon.$$ Moreover, the argument implies the existence of a greedy algorithm which outputs $\{y_i\}_{i=1}^n$ after receiving $\{x_i\}_{i=1}^n$ as input. The proof relies on a derandomized version of Maurey's empirical method (1981) combined with a combinatorial idea of Ball (1990) and classical factorization theory of $L_p(\mu)$ spaces. Motivated by the above embedding, we introduce the notion of $\varepsilon$-isometric dimension reduction of the unit ball ${\bf B}_E$ of a normed space $(E,\|\cdot\|_E)$ and we prove that ${\bf B}_{\ell_p}$ does not admit $\varepsilon$-isometric dimension reduction by linear operators for any value of $p\neq2$.
翻译:固定 $[1,\\ infty] $, $K\ in( 0,\ infty) 美元和概率 美元。 我们证明, 每一個運算器$[0, 1美元, $\, 1,\ldot, x_n\ in L_ p\ 美元 美元, 1,\\ fot, n\\ lifot, \\\ x_ i\ i\ i, lib\ p( leq) 美元, 每一個運算器$美元, 每一個運算器$( 2K) 美元, $1\ pl2美元, 美元, 1美元, 1美元, 1美元, 1美元, 1美元, 1美元, 美元, 1美元, 美元, i, i\\\\\\\\\\\\\\\\\\\\ i, i, i, 美元, 美元, 美元, 美元, i, i, i, i, i, i, i, i, i, i\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ lixxxx lixxxxxxxxxx i, i, i, i, i, i, i, i, i, i, i, i, i, li, li, li, li, li, li, li, li, li, a, li, li, li, li, li, li, li, li, a, a, a, a, a, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li, a, li, li, li, li, li, li, li, li, li, li,