We prove that every bounded function $f:\{-1,1\}^n\to[-1,1]$ of degree at most $d$ can be learned with $L_2$-accuracy $\varepsilon$ and confidence $1-\delta$ from $\log(\tfrac{n}{\delta})\,\varepsilon^{-d-1} C^{d^{3/2}\sqrt{\log d}}$ random queries, where $C>1$ is a universal finite constant.


翻译:我们证明,每个受约束的函数$f: ⁇ -1-1 ⁇ n\to[-1-1,1]美元,最多不超过1美元,可以用美元=2美元-准确性$\varepsilon$和信任值$1\delta$(tfrac{nhdelta})\\\\\,\varepsilon ⁇ _-d-1}C>d ⁇ 3/2 ⁇ sqrt}sqrt} d ⁇ $随机查询来学习,其中,$C>1是通用的有限常数。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年1月5日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员