In this paper we discuss the numerical solution on a simple 2D domain of the Helmoltz equation with mixed boundary conditions. The so called radiation problem depends on the wavenumber constant parameter k and it is inspired here by medical applications, where a transducer emits a pulse at a given frequency. This problem has been successfully solved in the past with the classical Finite Element Method (FEM) for relative small values of k. But in modern applications the values of k can be of order of thousands and FEM faces up several numerical difficulties. To overcome these difficulties we solve the radiation problem using the Isogeometric Analysis (IgA), a kind of generalization of FEM. Starting with the variational formulation of the radiation problem, we show with details how to apply the isogeometric approach in order to compute the coefficients of the approximated solution of radiation problem in terms of the B-spline basis functions. Our implementation of IgA using GeoPDEs software shows that isogeometric approach is superior than FEM, since it is able to reduce substantially the pollution error, especially for high values of k, producing additionally smoother solutions which depend on less degrees of freedom.


翻译:在本文中,我们讨论Helmoltz 方程式简单 2D 域的数值解决方案,并使用混合边界条件。所谓的辐射问题取决于波数常数参数 k, 并在此受到医疗应用的启发, 即一个传感器以给定频率发出脉冲。 这个问题过去曾成功地用传统微量元素法( FEM) 来计算相对小的k。 但在现代应用中, k 的数值可以按千位顺序排列, FEM 面临数方面的困难。 要克服这些困难,我们用Isogeologic 分析(IgA) 解决辐射问题, 这是一种FEM 的概括化。 从辐射问题的变式配方开始, 我们展示了如何应用异度测量方法, 以便用B- spline 基函数来计算辐射问题近似解决办法的系数。 我们使用 GeoPDES软件对IGA 的运用情况表明, 等量法方法优于 FEM, 因为它能够大幅减少污染错误, 特别是高值的K, 产生更多自由度, 以较低程度为依次。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Sufficient Statistic Memory AMP
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员