Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet-Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz-Schur multipliers over group algebras and depolarizing semigroups.
翻译:继最近关于量子系统下曲线曲线线的工作之后,我们引入了两种非复合的曲线-曲线线,用于对称量子马可夫半组相对于矩阵代数。在这种适当的曲线-曲线条件下,我们证明是一个依赖维度功能不平等的大家庭,一个版本的波奈特-米耶斯定理和在非组合环境中的加密功率的精密性。我们还提供了一些符合某些曲线-曲线线条件的例子,包括矩阵代数的舒尔乘数、组代数的赫兹-舒尔倍增数和组代数的分极化半组。