The Arnold-Beltrami-Childress (ABC) flow and the Kolmogorov flow are three dimensional periodic divergence free velocity fields that exhibit chaotic streamlines. We are interested in front speed enhancement in G-equation of turbulent combustion by large intensity ABC and Kolmogorov flows. We give a quantitative construction of the ballistic orbits of ABC and Kolmogorov flows, namely those with maximal large time asymptotic speeds in a coordinate direction. Thanks to the optimal control theory of G-equation (a convex but non-coercive Hamilton-Jacobi equation), the ballistic orbits serve as admissible trajectories for front speed estimates. To study the tightness of the estimates, we compute the front speeds of G-equation based on a semi-Lagrangian (SL) scheme with Strang splitting and weighted essentially non-oscillatory (WENO) interpolation. Time step size is chosen so that the Courant number grows sublinearly with the flow intensity. Numerical results show that the front speed growth rate in terms of the flow intensity may approach the analytical bounds from the ballistic orbits.


翻译:Arnold-Beltrami-Chilterres(ABC)流和Kolmogorov流是三维的周期间分解自由速度场,呈现出混乱的精简。我们有兴趣在大强度ABC和Kolmogorov流的扰动燃烧中提高G值前速率。我们根据半Lagrangian(SL)计划对ABC和Kolmogorov流的弹道轨道进行定量构造,即那些在协调方向上具有最大大时间的低温速度的轨道。由于G-equation(一个凝固但非冷却的汉密尔顿-Jacobi方程式)的最佳控制理论,弹道轨道可以用作前速估计的轨道。我们根据半Lagrangian(SL)计划计算G的前速速率,即以最大时间分解和基本上非悬浮体(WENNO)的内位计算。选择了时间步势,这样,Courant数字会随着流动强度的次线增长。Numerical结果显示,前轨速度的轨道增长速度方法可能以轨道强度为轨道的极限。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2021年6月30日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月8日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员