We consider the additional entropy production (EP) incurred by a fixed quantum or classical process on some initial state $\rho$, above the minimum EP incurred by the same process on any initial state. We show that this additional EP, which we term the "mismatch cost of $\rho$", has a universal information-theoretic form: it is given by the contraction of the relative entropy between $\rho$ and the least-dissipative initial state $\varphi$ over time. We derive versions of this result for integrated EP incurred over the course of a process, for trajectory-level fluctuating EP, and for instantaneous EP rate. We also show that mismatch cost for fluctuating EP obeys an integral fluctuation theorem. Our results demonstrate a fundamental relationship between "thermodynamic irreversibility" (generation of EP) and "logical irreversibility" (inability to know the initial state corresponding to a given final state). We use this relationship to derive quantitative bounds on the thermodynamics of quantum error correction and to propose a thermodynamically-operationalized measure of the logical irreversibility of a quantum channel. Our results hold for both finite and infinite dimensional systems, and generalize beyond EP to many other thermodynamic costs, including nonadiabatic EP, free energy loss, and entropy gain.


翻译:我们认为,某些初始状态的固定量值或古典生产过程产生的额外酶生产量(EP)超过了该初始状态的最小量值,高于同一过程在任何初始状态下产生的最低量值。我们表明,这种额外的EP(我们称之为“美元相配成本 ” ) 具有一种普遍的信息理论形式:它是由美元与最低偏差初始状态之间相对的酶生产量(EP)随着时间推移而形成的。我们从这一结果中得出各种版本,用于在某个过程过程中产生的综合浓缩浓缩量,用于轨迹水平波动的EP,以及用于瞬时的EP率。我们还表明,这种波动的不匹配成本符合一个整体波动的理论。我们的结果表明,“热力不可逆转性(EP的生成)”和“逻辑不可逆转性(无法了解与给定最终状态相对应的初始状态)”之间存在根本关系。我们利用这种关系来得出数量动力学错误校正值校正的定量界限,并提议对ERPO的动态可执行性测量性、不及不可逆性(包括不可逆性、不可逆性、不可逆性、可逆性、不可逆性、不可逆性等等等的)的系统的结果。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员