Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks. Unfortunately, they are prone to hallucinations, where the model exposes incorrect or false information in its responses, which renders diligent evaluation approaches mandatory. While LLM performance in specific knowledge fields is often evaluated based on question and answer (Q&A) datasets, such evaluations usually report only a single accuracy number for the entire field, a procedure which is problematic with respect to transparency and model improvement. A stratified evaluation could instead reveal subfields, where hallucinations are more likely to occur and thus help to better assess LLMs' risks and guide their further development. To support such stratified evaluations, we propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets. LLMMaps provide detailed insights into LLMs' knowledge capabilities in different subfields, by transforming Q&A datasets as well as LLM responses into our internal knowledge structure. An extension for comparative visualization furthermore, allows for the detailed comparison of multiple LLMs. To assess LLMMaps we use them to conduct a comparative analysis of several state-of-the-art LLMs, such as BLOOM, GPT-2, GPT-3, ChatGPT and LLaMa-13B, as well as two qualitative user evaluations. All necessary source code and data for generating LLMMaps to be used in scientific publications and elsewhere will be available on GitHub.
翻译:大型语言模型(LLMs)已经在自然语言处理领域带来了革命性的变革,并展示了在各种任务中的引人注目的能力。不幸的是,它们容易产生幻觉,即模型在其回答中暴露不正确或错误的信息,这使得必须采用谨慎的评估方法。虽然LLMs在特定的知识领域中的性能通常基于问题和回答(Q&A)数据集进行评估,但这种评估通常仅报告整个领域的单个准确性数字,这个过程在透明度和模型改进方面是有问题的。分层评估可以揭示易发生幻觉的子领域,从而更好地评估LLMs的风险并指导其进一步发展。为了支持这种分层评估,我们提出了LLMMaps作为一种新颖的可视化技术,使用户能够使用Q&A数据集评估LLMs在不同子领域的性能。LLMMaps通过将Q&A数据集以及LLM响应转化为我们的内部知识结构,提供了对LLMs在不同子领域知识能力的详细洞察。进一步的比较可视化扩展还允许详细比较多个LLMs。为了评估LLMMaps,我们使用它们来对多种最先进的LLMs进行比较分析,如BLOOM、GPT-2、GPT-3、ChatGPT和LLaMa-13B,以及两项定性用户评估。在GitHub上提供了用于生成科学出版物和其他地方使用LLMMaps所需的所有源代码和数据。