Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, \ie content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation for Large Language Models (HELMA) benchmark, a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing and alleviating hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, \ie sampling-then-filtering. Specifically, we first adopt two different sampling methods to generate hallucinated samples based on instructions, and then use an example-enhanced filtering method to select the best one. Furthermore, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT has some probabilities to generate hallucinations and existing LLMs face great challenges in recognizing the hallucinations in text. In addition, the performance can be improved by providing external knowledge or adding reasoning steps. Our benchmark can be accessed at https://github.com/RUCAIBox/HELMA.
翻译:暂无翻译