In this paper, we learn to classify visual object instances, incrementally and via self-supervision (self-incremental). Our learner observes a single instance at a time, which is then discarded from the dataset. Incremental instance learning is challenging, since longer learning sessions exacerbate forgetfulness, and labeling instances is cumbersome. We overcome these challenges via three contributions: i. We propose VINIL, a self-incremental learner that can learn object instances sequentially, ii. We equip VINIL with self-supervision to by-pass the need for instance labelling, iii. We compare VINIL to label-supervised variants on two large-scale benchmarks and show that VINIL significantly improves accuracy while reducing forgetfulness.
翻译:在本文中,我们学会以渐进的方式和通过自我监督(自我强化)对视觉物体实例进行分类。 我们的学习者一次观察一个实例,然后从数据集中丢弃。 递增实例学习具有挑战性,因为较长的学习课会加剧遗忘性,而贴标签则十分繁琐。 我们通过三种贡献克服了这些挑战: i. 我们建议VINIL, 一个能够按顺序学习物体实例的自我强化学习者。 我们为VINIL提供自我监督的观察设备,以绕过对标签的需要, iii. 我们将VINIL与两个大规模基准的标签监督变体进行了对比, 并表明VINIL在降低遗忘性的同时大大提高了准确性。