We design online algorithms for the fair allocation of public goods to a set of $N$ agents over a sequence of $T$ rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, the algorithm learns every agent's value for the good, and must irrevocably decide the amount of investment in the good without exceeding a total budget of $B$ across all rounds. The algorithm can utilize (potentially inaccurate) predictions of each agent's total value for all the goods to arrive. We measure the performance of the algorithm using a proportional fairness objective, which informally demands that every group of agents be rewarded in proportion to its size and the cohesiveness of its preferences. In the special case of binary agent preferences and a unit budget, we show that $O(\log N)$ proportional fairness can be achieved without using any predictions, and that this is optimal even if perfectly accurate predictions were available. However, for general preferences and budget no algorithm can achieve better than $\Theta(T/B)$ proportional fairness without predictions. We show that algorithms with (reasonably accurate) predictions can do much better, achieving $\Theta(\log (T/B))$ proportional fairness. We also extend this result to a general model in which a batch of $L$ public goods arrive in each round and achieve $O(\log (\min(N,L) \cdot T/B))$ proportional fairness. Our exact bounds are parametrized as a function of the error in the predictions and the performance degrades gracefully with increasing errors.


翻译:我们设计了在线算法,将公益物公平分配给一组美元代理商,在一系列美元交易中将公益物公平分配给一组美元代理商,并侧重于利用预测来改进它们的业绩。在基本模型中,每回合都有公益物,算法会了解每个代理商对公益物的价值,而且必须在所有回合中不可撤销地决定对公益物的投资额,而不会超过总预算的B美元。算法可以使用(可能不准确的)对每个代理商总价值的预测,以所有货物到达。我们使用比例公平性目标来衡量算法的错误性能,该目标非正式地要求每个代理商集团按其规模及其偏好程度的凝聚力来得到报酬。在二元代理商偏好和单位预算的特殊案例中,我们显示,在不使用任何预测的情况下,美元(g)成比例公平性投资,即使完全准确的预测也是最佳的。但是,对于一般的偏好和预算的算法,没有预测就能比$(T/B)更准确性地衡量算得更好。我们显示,以(可以准确的)成本/美元交易的准确性,我们每个货物的推算得更好。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月2日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员