Motivated by an application from geodesy, we introduce a novel clustering problem which is a $k$-center (or k-diameter) problem with a side constraint. For the side constraint, we are given an undirected connectivity graph $G$ on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in $G$. We call the resulting problems the connected $k$-center problem and the connected $k$-diameter problem. We prove several results on the complexity and approximability of these problems. Our main result is an $O(\log^2{k})$-approximation algorithm for the connected $k$-center and the connected $k$-diameter problem. For Euclidean metrics and metrics with constant doubling dimension, the approximation factor of this algorithm improves to $O(1)$. We also consider the special cases that the connectivity graph is a line or a tree. For the line we give optimal polynomial-time algorithms and for the case that the connectivity graph is a tree, we either give an optimal polynomial-time algorithm or a $2$-approximation algorithm for all variants of our model. We complement our upper bounds by several lower bounds.
翻译:由大地测量的应用程序驱动, 我们引入了一个新型的集群问题, 它是一个 $- 中点( 或 k- 直径) 问题, 并带有侧力限制 。 在侧力限制下, 输入点上, 我们得到一个未引导的连接图形$G$, 只有当每个集以G$进行连接子图时, 集群才有可行性。 我们称由此产生的问题为连接美元中点问题和连接的美元- 直径问题 。 我们证明这些问题的复杂性和相近性有若干结果 。 我们的主要结果是 $( log_ 2 { k}) 中点( 或 k- 直径) 问题 。 对于连接的 $k- 中点和连接的 $K$- 直径问题, 我们得到一个无方向的无方向的连接匹配算法 。 对于不断翻倍的 Euclidean 矩阵和度参数来说, 这个算法的近似系数提高到$O(1) 。 我们还考虑到连接图是一线或一棵树。 对于这条线, 我们给出了最佳的多时段算算算算法, 我们用一个顶端数的模型来补充了我们最低的模型的矩阵 。