In this paper we study simulation-based methods for estimating gradients in stochastic networks. We derive a new method of calculating weak derivative estimator using importance sampling transform, and our method has less computational cost than the classical method. In the context of M/M/1 queueing network and stochastic activity network, we analytically show that our new method won't result in a great increase of sample variance of the estimators. Our numerical experiments show that under same simulation time, the new method can yield a narrower confidence interval of the true gradient than the classical one, suggesting that the new method is more competitive.
翻译:在本文中,我们研究了用于估计随机网络梯度的基于模拟的方法。我们推导了一种使用重要性抽样变换计算弱导数估算器的新方法,其计算成本比经典方法低。在 M/M/1 排队网络和随机活动网络的背景下,我们分析地表明,我们的新方法不会导致估计器的样本方差巨大增加。我们的数值实验表明,在相同的模拟时间下,新方法可以产生比经典方法更窄的真实梯度置信区间,这表明新方法更具竞争力。