Opportunistic computing is a paradigm for completely self-organised pervasive networks. Instead of relying only on fixed infrastructures as the cloud, users' devices act as service providers for each other. They use pairwise contacts to collect information about services provided and amount of time to provide them by the encountered nodes. At each node, upon generation of a service request, this information is used to choose the most efficient service, or composition of services, that satisfy that request, based on local knowledge. Opportunistic computing can be exploited in several scenarios, including mobile social networks, IoT and Internet 4.0. In this paper we propose an opportunistic computing algorithm based on an analytical model, which ranks the available (composition of) services, based on their expected completion time. Through the model, a service requesters picks the one that is expected to be the best. Experiments show that the algorithm is accurate in ranking services, thus providing an effective service-selection policy. Such a policy achieves significantly lower service provisioning times compared to other reference policies. Its performance is tested in a wide range of scenarios varying the nodes mobility, the size of input/output parameters, the level of resource congestion, the computational complexity of service executions.
翻译:机会计算是完全自我组织的无处不在的网络的范例。 用户的装置不是仅仅依靠固定的基础设施作为云层,而是作为彼此的服务提供者。 他们使用对称的联系人来收集关于所提供服务的信息以及被遇到的节点提供的时间。 在每一个节点, 生成服务请求时, 这种信息被用来选择最高效的服务或服务构成, 从而根据当地知识, 满足这一请求。 机会计算可以在几种情景中加以利用, 包括移动社交网络、 IoT 和 Internet 4. 0。 在本文中, 我们提议一种机会计算算法, 以分析模型为基础, 该模型根据预期的完成时间对可提供的服务进行排序( 配置 ) 。 在模型中, 服务请求者选择了预期最佳的服务。 实验表明, 算法在排序服务中是准确的, 从而提供了有效的服务选择政策。 这种政策比其他参考政策要低得多的服务提供时间。 它的性在一系列不同的情景中测试了它的表现, 不同的节点流动性、 投入/ 投入参数的复杂程度、 资源拥挤的计算。